\(\int \sqrt {\tan (c+d x)} (a+i a \tan (c+d x))^{3/2} (A+B \tan (c+d x)) \, dx\) [162]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F(-2)]
   Mupad [F(-1)]

Optimal result

Integrand size = 38, antiderivative size = 204 \[ \int \sqrt {\tan (c+d x)} (a+i a \tan (c+d x))^{3/2} (A+B \tan (c+d x)) \, dx=-\frac {(-1)^{3/4} a^{3/2} (12 A-11 i B) \arctan \left (\frac {(-1)^{3/4} \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{4 d}-\frac {(2+2 i) a^{3/2} (A-i B) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}+\frac {a (4 i A+5 B) \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{4 d}+\frac {i a B \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{2 d} \]

[Out]

-1/4*(-1)^(3/4)*a^(3/2)*(12*A-11*I*B)*arctan((-1)^(3/4)*a^(1/2)*tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/2))/d-(
2+2*I)*a^(3/2)*(A-I*B)*arctanh((1+I)*a^(1/2)*tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/2))/d+1/4*a*(4*I*A+5*B)*ta
n(d*x+c)^(1/2)*(a+I*a*tan(d*x+c))^(1/2)/d+1/2*I*a*B*(a+I*a*tan(d*x+c))^(1/2)*tan(d*x+c)^(3/2)/d

Rubi [A] (verified)

Time = 0.79 (sec) , antiderivative size = 204, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.237, Rules used = {3675, 3678, 3682, 3625, 211, 3680, 65, 223, 209} \[ \int \sqrt {\tan (c+d x)} (a+i a \tan (c+d x))^{3/2} (A+B \tan (c+d x)) \, dx=-\frac {(-1)^{3/4} a^{3/2} (12 A-11 i B) \arctan \left (\frac {(-1)^{3/4} \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{4 d}-\frac {(2+2 i) a^{3/2} (A-i B) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}+\frac {a (5 B+4 i A) \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{4 d}+\frac {i a B \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{2 d} \]

[In]

Int[Sqrt[Tan[c + d*x]]*(a + I*a*Tan[c + d*x])^(3/2)*(A + B*Tan[c + d*x]),x]

[Out]

-1/4*((-1)^(3/4)*a^(3/2)*(12*A - (11*I)*B)*ArcTan[((-1)^(3/4)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c +
 d*x]]])/d - ((2 + 2*I)*a^(3/2)*(A - I*B)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*
x]]])/d + (a*((4*I)*A + 5*B)*Sqrt[Tan[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]])/(4*d) + ((I/2)*a*B*Tan[c + d*x]^(3
/2)*Sqrt[a + I*a*Tan[c + d*x]])/d

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 3625

Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[
-2*a*(b/f), Subst[Int[1/(a*c - b*d - 2*a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x]
 /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]

Rule 3675

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b*B*(a + b*Tan[e + f*x])^(m - 1)*((c + d*Tan[e + f*x])^(n + 1)/(d*f*
(m + n))), x] + Dist[1/(d*(m + n)), Int[(a + b*Tan[e + f*x])^(m - 1)*(c + d*Tan[e + f*x])^n*Simp[a*A*d*(m + n)
 + B*(a*c*(m - 1) - b*d*(n + 1)) - (B*(b*c - a*d)*(m - 1) - d*(A*b + a*B)*(m + n))*Tan[e + f*x], x], x], x] /;
 FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && GtQ[m, 1] &&  !LtQ[n, -1]

Rule 3678

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[B*(a + b*Tan[e + f*x])^m*((c + d*Tan[e + f*x])^n/(f*(m + n))), x] +
Dist[1/(a*(m + n)), Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n - 1)*Simp[a*A*c*(m + n) - B*(b*c*m + a*
d*n) + (a*A*d*(m + n) - B*(b*d*m - a*c*n))*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] &
& NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && GtQ[n, 0]

Rule 3680

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[b*(B/f), Subst[Int[(a + b*x)^(m - 1)*(c + d*x)^n, x], x, Tan[e + f*x
]], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && EqQ[A*b + a*B,
 0]

Rule 3682

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[(A*b + a*B)/b, Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n, x]
, x] - Dist[B/b, Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(a - b*Tan[e + f*x]), x], x] /; FreeQ[{a, b
, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[A*b + a*B, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {i a B \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{2 d}+\frac {1}{2} \int \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)} \left (\frac {1}{2} a (4 A-3 i B)+\frac {1}{2} a (4 i A+5 B) \tan (c+d x)\right ) \, dx \\ & = \frac {a (4 i A+5 B) \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{4 d}+\frac {i a B \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{2 d}+\frac {\int \frac {\sqrt {a+i a \tan (c+d x)} \left (-\frac {1}{4} a^2 (4 i A+5 B)+\frac {1}{4} a^2 (12 A-11 i B) \tan (c+d x)\right )}{\sqrt {\tan (c+d x)}} \, dx}{2 a} \\ & = \frac {a (4 i A+5 B) \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{4 d}+\frac {i a B \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{2 d}-(2 a (i A+B)) \int \frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {\tan (c+d x)}} \, dx+\frac {1}{8} (12 i A+11 B) \int \frac {(a-i a \tan (c+d x)) \sqrt {a+i a \tan (c+d x)}}{\sqrt {\tan (c+d x)}} \, dx \\ & = \frac {a (4 i A+5 B) \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{4 d}+\frac {i a B \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{2 d}-\frac {\left (4 a^3 (A-i B)\right ) \text {Subst}\left (\int \frac {1}{-i a-2 a^2 x^2} \, dx,x,\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}+\frac {\left (a^2 (12 i A+11 B)\right ) \text {Subst}\left (\int \frac {1}{\sqrt {x} \sqrt {a+i a x}} \, dx,x,\tan (c+d x)\right )}{8 d} \\ & = -\frac {(2+2 i) a^{3/2} (A-i B) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}+\frac {a (4 i A+5 B) \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{4 d}+\frac {i a B \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{2 d}+\frac {\left (a^2 (12 i A+11 B)\right ) \text {Subst}\left (\int \frac {1}{\sqrt {a+i a x^2}} \, dx,x,\sqrt {\tan (c+d x)}\right )}{4 d} \\ & = -\frac {(2+2 i) a^{3/2} (A-i B) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}+\frac {a (4 i A+5 B) \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{4 d}+\frac {i a B \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{2 d}+\frac {\left (a^2 (12 i A+11 B)\right ) \text {Subst}\left (\int \frac {1}{1-i a x^2} \, dx,x,\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{4 d} \\ & = -\frac {\sqrt [4]{-1} a^{3/2} (12 i A+11 B) \arctan \left (\frac {(-1)^{3/4} \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{4 d}-\frac {(2+2 i) a^{3/2} (A-i B) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}+\frac {a (4 i A+5 B) \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{4 d}+\frac {i a B \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+i a \tan (c+d x)}}{2 d} \\ \end{align*}

Mathematica [A] (verified)

Time = 4.84 (sec) , antiderivative size = 283, normalized size of antiderivative = 1.39 \[ \int \sqrt {\tan (c+d x)} (a+i a \tan (c+d x))^{3/2} (A+B \tan (c+d x)) \, dx=\frac {a \left (\frac {a (4 A-3 i B) \left ((-1)^{3/4} \text {arcsinh}\left (\sqrt [4]{-1} \sqrt {\tan (c+d x)}\right )-\sqrt {1+i \tan (c+d x)} \sqrt {\tan (c+d x)}\right ) (-i+\tan (c+d x))}{\sqrt {1+i \tan (c+d x)}}-2 a B \sqrt {\tan (c+d x)} (-i+\tan (c+d x))^2+\frac {8 (A-i B) \sqrt {i a \tan (c+d x)} \left (\sqrt {a} \text {arcsinh}\left (\frac {\sqrt {i a \tan (c+d x)}}{\sqrt {a}}\right ) \sqrt {1+i \tan (c+d x)}-\sqrt {2} \text {arctanh}\left (\frac {\sqrt {2} \sqrt {i a \tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right ) \sqrt {a+i a \tan (c+d x)}\right )}{\sqrt {\tan (c+d x)}}\right )}{4 d \sqrt {a+i a \tan (c+d x)}} \]

[In]

Integrate[Sqrt[Tan[c + d*x]]*(a + I*a*Tan[c + d*x])^(3/2)*(A + B*Tan[c + d*x]),x]

[Out]

(a*((a*(4*A - (3*I)*B)*((-1)^(3/4)*ArcSinh[(-1)^(1/4)*Sqrt[Tan[c + d*x]]] - Sqrt[1 + I*Tan[c + d*x]]*Sqrt[Tan[
c + d*x]])*(-I + Tan[c + d*x]))/Sqrt[1 + I*Tan[c + d*x]] - 2*a*B*Sqrt[Tan[c + d*x]]*(-I + Tan[c + d*x])^2 + (8
*(A - I*B)*Sqrt[I*a*Tan[c + d*x]]*(Sqrt[a]*ArcSinh[Sqrt[I*a*Tan[c + d*x]]/Sqrt[a]]*Sqrt[1 + I*Tan[c + d*x]] -
Sqrt[2]*ArcTanh[(Sqrt[2]*Sqrt[I*a*Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]]*Sqrt[a + I*a*Tan[c + d*x]]))/Sqrt
[Tan[c + d*x]]))/(4*d*Sqrt[a + I*a*Tan[c + d*x]])

Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 562 vs. \(2 (162 ) = 324\).

Time = 0.15 (sec) , antiderivative size = 563, normalized size of antiderivative = 2.76

method result size
derivativedivides \(-\frac {\left (\sqrt {\tan }\left (d x +c \right )\right ) \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, a \left (-4 i B \sqrt {i a}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \tan \left (d x +c \right )+4 i A \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) a \sqrt {-i a}-8 i A \sqrt {i a}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-4 i \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \sqrt {i a}\, a +5 B \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\, a -10 B \sqrt {i a}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+8 i \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\, a -4 \sqrt {i a}\, \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a -8 \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\, a \right )}{8 d \sqrt {i a}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}}\) \(563\)
default \(-\frac {\left (\sqrt {\tan }\left (d x +c \right )\right ) \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, a \left (-4 i B \sqrt {i a}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \tan \left (d x +c \right )+4 i A \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) a \sqrt {-i a}-8 i A \sqrt {i a}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-4 i \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \sqrt {i a}\, a +5 B \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\, a -10 B \sqrt {i a}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+8 i \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\, a -4 \sqrt {i a}\, \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a -8 \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\, a \right )}{8 d \sqrt {i a}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}}\) \(563\)
parts \(\frac {A \left (\sqrt {\tan }\left (d x +c \right )\right ) \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, a \left (2 i \sqrt {i a}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+3 i \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\, a +i \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \sqrt {i a}\, a +4 \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\, a +\sqrt {i a}\, \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \right )}{2 d \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}}-\frac {B \left (\sqrt {\tan }\left (d x +c \right )\right ) \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, a \left (-4 i \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}\, \tan \left (d x +c \right )-10 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}-11 \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\, a +4 i \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) \sqrt {i a}\, a +16 i \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\, a -4 \sqrt {i a}\, \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \right )}{8 d \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}}\) \(766\)

[In]

int(tan(d*x+c)^(1/2)*(a+I*a*tan(d*x+c))^(3/2)*(A+B*tan(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

-1/8/d*tan(d*x+c)^(1/2)*(a*(1+I*tan(d*x+c)))^(1/2)*a*(-4*I*B*(I*a)^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d
*x+c)))^(1/2)*tan(d*x+c)+4*I*A*ln(1/2*(2*I*a*tan(d*x+c)+2*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)+a)
/(I*a)^(1/2))*(-I*a)^(1/2)*a-8*I*A*(I*a)^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)-4*I*(I*a)^(1
/2)*2^(1/2)*ln((2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)-I*a+3*a*tan(d*x+c))/(tan(d*x+c)+I
))*a+5*B*ln(1/2*(2*I*a*tan(d*x+c)+2*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)+a)/(I*a)^(1/2))*(-I*a)^(
1/2)*a-10*B*(I*a)^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+8*I*ln(1/2*(2*I*a*tan(d*x+c)+2*(a*t
an(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)+a)/(I*a)^(1/2))*a*(-I*a)^(1/2)-4*(I*a)^(1/2)*2^(1/2)*ln((2*2^(1/
2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)-I*a+3*a*tan(d*x+c))/(tan(d*x+c)+I))*a-8*ln(1/2*(2*I*a*ta
n(d*x+c)+2*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)+a)/(I*a)^(1/2))*(-I*a)^(1/2)*a)/(I*a)^(1/2)/(-I*a
)^(1/2)/(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)

Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 829 vs. \(2 (150) = 300\).

Time = 0.27 (sec) , antiderivative size = 829, normalized size of antiderivative = 4.06 \[ \int \sqrt {\tan (c+d x)} (a+i a \tan (c+d x))^{3/2} (A+B \tan (c+d x)) \, dx=\text {Too large to display} \]

[In]

integrate(tan(d*x+c)^(1/2)*(a+I*a*tan(d*x+c))^(3/2)*(A+B*tan(d*x+c)),x, algorithm="fricas")

[Out]

1/8*(8*sqrt(2)*sqrt(-(-I*A^2 - 2*A*B + I*B^2)*a^3/d^2)*(d*e^(2*I*d*x + 2*I*c) + d)*log((sqrt(2)*sqrt(-(-I*A^2
- 2*A*B + I*B^2)*a^3/d^2)*d*e^(I*d*x + I*c) + sqrt(2)*((-I*A - B)*a*e^(2*I*d*x + 2*I*c) + (-I*A - B)*a)*sqrt(a
/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1)))*e^(-I*d*x - I*c)/((-
I*A - B)*a)) - 8*sqrt(2)*sqrt(-(-I*A^2 - 2*A*B + I*B^2)*a^3/d^2)*(d*e^(2*I*d*x + 2*I*c) + d)*log(-(sqrt(2)*sqr
t(-(-I*A^2 - 2*A*B + I*B^2)*a^3/d^2)*d*e^(I*d*x + I*c) - sqrt(2)*((-I*A - B)*a*e^(2*I*d*x + 2*I*c) + (-I*A - B
)*a)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1)))*e^(-I*d*x
 - I*c)/((-I*A - B)*a)) + 2*sqrt(2)*((4*I*A + 7*B)*a*e^(3*I*d*x + 3*I*c) + (4*I*A + 3*B)*a*e^(I*d*x + I*c))*sq
rt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1)) + sqrt((144*I*A^2
 + 264*A*B - 121*I*B^2)*a^3/d^2)*(d*e^(2*I*d*x + 2*I*c) + d)*log((sqrt(2)*((12*I*A + 11*B)*a*e^(2*I*d*x + 2*I*
c) + (12*I*A + 11*B)*a)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*
c) + 1)) + 2*sqrt((144*I*A^2 + 264*A*B - 121*I*B^2)*a^3/d^2)*d*e^(I*d*x + I*c))*e^(-I*d*x - I*c)/((12*I*A + 11
*B)*a)) - sqrt((144*I*A^2 + 264*A*B - 121*I*B^2)*a^3/d^2)*(d*e^(2*I*d*x + 2*I*c) + d)*log((sqrt(2)*((12*I*A +
11*B)*a*e^(2*I*d*x + 2*I*c) + (12*I*A + 11*B)*a)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c
) + I)/(e^(2*I*d*x + 2*I*c) + 1)) - 2*sqrt((144*I*A^2 + 264*A*B - 121*I*B^2)*a^3/d^2)*d*e^(I*d*x + I*c))*e^(-I
*d*x - I*c)/((12*I*A + 11*B)*a)))/(d*e^(2*I*d*x + 2*I*c) + d)

Sympy [F]

\[ \int \sqrt {\tan (c+d x)} (a+i a \tan (c+d x))^{3/2} (A+B \tan (c+d x)) \, dx=\int \left (i a \left (\tan {\left (c + d x \right )} - i\right )\right )^{\frac {3}{2}} \left (A + B \tan {\left (c + d x \right )}\right ) \sqrt {\tan {\left (c + d x \right )}}\, dx \]

[In]

integrate(tan(d*x+c)**(1/2)*(a+I*a*tan(d*x+c))**(3/2)*(A+B*tan(d*x+c)),x)

[Out]

Integral((I*a*(tan(c + d*x) - I))**(3/2)*(A + B*tan(c + d*x))*sqrt(tan(c + d*x)), x)

Maxima [F]

\[ \int \sqrt {\tan (c+d x)} (a+i a \tan (c+d x))^{3/2} (A+B \tan (c+d x)) \, dx=\int { {\left (B \tan \left (d x + c\right ) + A\right )} {\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \sqrt {\tan \left (d x + c\right )} \,d x } \]

[In]

integrate(tan(d*x+c)^(1/2)*(a+I*a*tan(d*x+c))^(3/2)*(A+B*tan(d*x+c)),x, algorithm="maxima")

[Out]

integrate((B*tan(d*x + c) + A)*(I*a*tan(d*x + c) + a)^(3/2)*sqrt(tan(d*x + c)), x)

Giac [F(-2)]

Exception generated. \[ \int \sqrt {\tan (c+d x)} (a+i a \tan (c+d x))^{3/2} (A+B \tan (c+d x)) \, dx=\text {Exception raised: TypeError} \]

[In]

integrate(tan(d*x+c)^(1/2)*(a+I*a*tan(d*x+c))^(3/2)*(A+B*tan(d*x+c)),x, algorithm="giac")

[Out]

Exception raised: TypeError >> an error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:The choice was done assuming 0=[0]Warning, replacing 0 by -28, a substitution variable should perhaps be pu
rged.Warnin

Mupad [F(-1)]

Timed out. \[ \int \sqrt {\tan (c+d x)} (a+i a \tan (c+d x))^{3/2} (A+B \tan (c+d x)) \, dx=\int \sqrt {\mathrm {tan}\left (c+d\,x\right )}\,\left (A+B\,\mathrm {tan}\left (c+d\,x\right )\right )\,{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^{3/2} \,d x \]

[In]

int(tan(c + d*x)^(1/2)*(A + B*tan(c + d*x))*(a + a*tan(c + d*x)*1i)^(3/2),x)

[Out]

int(tan(c + d*x)^(1/2)*(A + B*tan(c + d*x))*(a + a*tan(c + d*x)*1i)^(3/2), x)